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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong performance in graph
mining tasks due to their message-passing mechanism, which is aligned with the
homophily assumption that adjacent nodes exhibit similar behaviors. However,
in many real-world graphs, connected nodes may display contrasting behaviors,
termed as heterophilous patterns, which has attracted increased interest in het-
erophilous GNNs (HTGNNs). Although the message-passing mechanism seems
unsuitable for heterophilous graphs due to the propagation of class-irrelevant infor-
mation, it is still widely used in many existing HTGNNs and consistently achieves
notable success. This raises the question: why does message passing remain effec-
tive on heterophilous graphs? To answer this question, in this paper, we revisit the
message-passing mechanisms in heterophilous graph neural networks and refor-
mulate them into a unified heterophilious message-passing (HTMP) mechanism.
Based on HTMP and empirical analysis, we reveal that the success of message
passing in existing HTGNN:Ss is attributed to implicitly enhancing the compatibility
matrix among classes. Moreover, we argue that the full potential of the compat-
ibility matrix is not completely achieved due to the existence of incomplete and
noisy semantic neighborhoods in real-world heterophilous graphs. To bridge this
gap, we introduce a new approach named CMGNN, which operates within the
HTMP mechanism to explicitly leverage and improve the compatibility matrix. A
thorough evaluation involving 10 benchmark datasets and comparative analysis
against 17 well-established baselines highlights the superior performance of the
HTMP mechanism and CMGNN method.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable performance in graph mining tasks, such as
social network analysis (Kipf & Welling} 2017} [Zhang et al., [2022) and recommender systems (Wang
et al., 2019; |He et al.| 2020). The design principle of GNNS is typically based on the homophily
assumption (McPherson et al., 2001)), which assumes that nodes are inclined to exhibit behaviors
similar to their neighboring nodes (Ma et al., | 2022). However, this assumption does not always hold
in real-world graphs, where the connected nodes demonstrate a contrasting tendency known as the
heterophily (Zhu et al.;|2021a)). In response to the challenges of heterophily in graphs, heterophilous
GNNs (HTGNNs) have attracted considerable research interest (Ma et al., 2022} [Zheng et al., 2022;
Zhu et al.| |2023), with numerous innovative approaches being introduced recently, such as/Abu-El+
Haija et al.| (2019); Bo et al.|(2021)); [Luan et al.|(2022)); Song et al.|(2023)). However, the majority of
these methods continue to employ a message-passing mechanism, which was not originally designed
for heterophilous graphs, as they tend to incorporate excessive information from disparate classes.
This naturally raises a question: Why does message passing remain effective on heterophilous graphs?

Recently, a few efforts (Ma et al., [2022; Zhu et al., 2023)) have begun to investigate this question
and reveal that vanilla message passing can work on heterophilous graphs under certain conditions.
However, the absence of a unified and comprehensive understanding of message passing within
existing HTGNNs has hindered the creation of innovative approaches. In this paper, we first revisit the
message-passing mechanisms in existing HTGNNs and reformulate them into a unified heterophilous
message-passing (HTMP) mechanism, which extends the definition of neighborhood in various ways
and simultaneously utilizes the messages of multiple neighborhoods. Specifically, HTMP consists of
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three major steps namely aggregating messages with explicit guidance, combining messages from
multiple neighborhoods, and fusing intermediate representations.

Equipped with HTMP, we further conduct empirical analysis on real-world graphs. The results reveal
that the success of message passing in existing HTGNNS is attributed to implicitly enhancing the
compatibility matrix, which exhibits the probabilities of observing edges among nodes from different
classes. In particular, by increasing the distinctiveness between the rows of the compatibility matrix
via different strategies, the node representations of different classes become more discriminative.

Drawing from previous observations, we contend that nodes within real-world graphs might exhibit a
semantic neighborhood that only reveals a fraction of the compatibility matrix, accompanied by noise.
This could limit the effectiveness of enhancing the compatibility matrix and result in suboptimal
representations. To fill this gap, we further propose a novel Compatibility Matrix-aware Graph Neural
Network (CMGNN) under HTMP mechanism, which utilizes the compatibility matrix to construct
desired neighborhood messages as supplementary for nodes and explicitly enhances the compatibility
matrix by a targeted constraint. We build a benchmark to fairly evaluate CMGNN and existing
methods, which encompasses 17 diverse baseline methods and 10 datasets that exhibit varying
levels of heterophily. Extensive experimental results demonstrate the superiority of CMGNN and
HTMP mechanism. The contributions of this paper are summarized as follows:

* We revisit the message-passing mechanisms in existing HTGNNs and reformulate them into a
unified heterophilous message-passing mechanism (HTMP), which not only provides a macroscopic
view of message passing in HTGNNs but also enables people to develop new methods flexibly.

* We reveal that the effectiveness of message passing on heterophilous graphs is attributed to
implicitly enhancing the compatibility matrix among classes, which gives us a new perspective to
understand the message passing in HTGNNS.

* Based on HTMP mechanism and empirical analysis, we propose CMGNN to unlock the potential
of the compatibility matrix in HTGNNs. We further build a unified benchmark that avoids the
issues of current datasets for fair evaluationﬂ Experiments show the superiority of CMGNN.

2 PRELIMINARIES

Given a graph G = (V,&,X, A)Y), V is the node set and £ is the edge set. Nodes are characterized
by the feature matrix X € RNV Xds where N = |V| denotes the number of nodes, d 1 1s the features
dimension. Y € RN*! is the node labels with the one-hot version C € RV*X  where K is
the number of node classes. The neighborhood of node v; is denoted as N;. A € RV*VN jg
the adjacency matrix , and D = diag(dy,...,d,,) represents the diagonal degree matrix, where
d;,=> ;Aij. A = A + Irepresents the adjacency matrix with self-loops. Let Z € RN *dr be the
node representations with dimension d,. learned by the models. We use 1 to represent a matrix with
all elements equal to 1, and O for a matrix with all elements equal to 0.

Homophily and Heterophily. High homophily is observed in graphs where a substantial portion
of connected nodes shares identical labels, while high heterophily corresponds to the opposite
situation. For measuring the homophily level, two widely used metrics are edge homophily ~° (Zhu

et al| 2020) and node homophily " (Pei et al., 2020), defined as h¢ = L{curlonnCh, ¥u=¥oh

and h" = \V\ > ey H"lueN”d Yu=Yu}l Both metrics have a range of [0, 1], where higher values
indicate stronger homophily and lower values indicate stronger heterophily.

Vanilla Message Passing (VMP). The vanilla message-passing mechanism plays a pivotal role in
transforming and updating node representations based on the neighborhood (Gilmer et al.| 2017).
Typically, the mechanism operates iteratively and comprises two stages:

Z! = AGGREGATE(A, Z!"1), Z! = COMBINE (ZH, Zl) , (1

where the AGGREGATE function first aggregates the input messages Z!~! from neighborhood A

into the aggregated one Z!, and subsequently, the COMBINE function combines the messages of
node ego and neighborhood aggregation, resulting in updated representations Z'.

!Codebase is available in the supplementary material.
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Table 1: Revisiting the message passing in representative heterophilous GNNs under the perspective
of HTMP mechanism.

Method Neighborhood Indicators Aggregation Guidance COMBINE FUSE
Type A Type B
GCN (Kipf & Welling|[2017) [A] B9 / Z=17"
APPNP (Gasteiger et al.[[2019) [LA] DegAvg [L,BY WeightedAdd | Z = Z"
GCNII (Chen et al.|[2020) | 1, A] 1,B9 WeightedAdd | Z = Z*
GAT (Velitkovié et al.|2018) [A] AdaWeight B / Z=17"
GPR-GNN (Chien et al.{[2021) Raw [A] B9 / AdaAdd
OrderedGNN (Song et al.|[2023) | [1,A] DegAvg [1,BY AdaCat Z =7k
ACM-GCN (Luan et al.|[2022) LA A] [L,B4I- B9 AdaAdd Z=127"
FAGCN (Boetal.|2021] | 1, A] [I, Brav) WeightedAdd | Z = ZLW
GBK-GNN (Du et al.|2022) LA, A] AdaWeight ™7 "o 1 o) Add Z=17"
SimP-GCN (Jin et al.|2021b) LA A 1, B, BY| AdaAdd 7 =17k
H2GCN (Zhu et al.||2020} (A, Apo) [BY, By,] Cat Cat
Geom-GCN (Pei et al.|[2020) Aty Acr, o Acr] | D8AYE B4 Bl B4 Cat Z =7k
MixHop (Abu-El-Haija et al.||2019) LA, Aps, .oy Apg] [I,BY BY,,..., B}, Cat 7Z=17"
UGCN (finetal.[2021a) | ReDef [A, A2, Ay ] [Bev,Bjy, B4"] AdaAdd Z=12"
WRGNN (Suresh et al.|[2021] (Aot s Ay oy Augy | AdaWeight Figa ™ Baw ... Bew] Add Z=17"
HOG-GCN (Wang et al.[2022) | [, An] [1,B™ WeightedAdd | Z = ZF
GloGNN (Li et al.|[2022} [L1] RelaFst [L,B"] WeightedAdd | Z =2z
GGCN (Yan et al.|[2022} Dis LA, A, [L, B¢, B AdaAdd Z=17F

“ The correspondence between the full form and the abbreviation: Raw Neighborhood (Raw), Neighborhood Redefine (ReDef), Neighborhood Discrimination (Dis),
Degree-based Averaging (DegAvg), Adaptive Weights (AdaWeight), Relation Estimation (RelaEst), Addition (Add), Weighted Addition (WeightAdd), Adaptive
Weighted Addition (AdaAdd), Concatenation (Cat), Adaptive Dimension Concatenation (AdaCat).

“ More details about the notations are available in Appendix

3 REVISITING MESSAGE PASSING IN HETEROPHILOUS GNNS.

To gain a thorough and unified insight into the effectiveness of message passing in HTGNNs, we
revisit message passing in various notable HTGNNs (Bo et al., 2021} Zhu et al., [2020; Jin et al.,
2021agb; |Pei et al., |2020; |/Abu-El-Haija et al., 2019; |Wang et al., 2022} |[Luan et al.,[2022; L1 et al.,
2022} |Chien et al., 2021} [Song et al., 2023} |Suresh et al.| [2021};|Yan et al.,[2022; |Du et al., |2022) and
propose a unified heterophilous message passing (HTMP) mechanism, structured as follows:

Z! = AGGREGATE(A,,B,,Z"!), Z! = COMBINE({Z!}* ), Z = FUSE({Z'},). ()

Generally, HTMP extends the definition of neighborhood in various ways and simultaneously uti-
lizes the messages of multiple neighborhoods, which is the key to better adapting to heterophily.
We use R to denote the number of neighborhoods used by the model. In each message passing
layer [, HTMP separately aggregates messages within R neighborhoods and combines them. The
methodological analysis of some representative HTGNNs and more details can be seen in Appendix
Compared to the VMP mechanism, HTMP mechanism has progressed in the following functions:

(1) To characterize different neigborhoods, the AGGREGATE function in HTMP includes the neigh-
borhood indicator A to indicate the neighbors within a specific neighborhood r. The adjacency
matrix A in VMP is a special neighborhood indicator that marks the neighbors in the raw neigh-
borhood. To further characterize the aggregation of different neighborhoods, HTMP introduces the
aggregation guidence B, for each neighborhood . In VMP, the aggregation guidance is an implicit
parameter of the AGGREGATE function since it only works for the raw neighborhood. A commonly
used form of the AGGREGATE function is AGGREGATE(A,, B,,Z!"!) = (A, ® B,)Z"'WL,
where © is the Hadamard product and W' is a weight matrix for message transformation. We take
this as the general form of the AGGREGATE function and only analyze the neighborhood indicators
and the aggregation guidance in the following.

The neighborhood indicator A, € {0,1}"*¥ indicates neighbors associated with central nodes
within neighborhood 7. To describe the multiple neighborhoods in HTGNNs, neighborhood indicators
can be formed as a list A = [A1, ..., A, ..., AR]. For the sake of simplicity, we consider the identity
matrix I € RV*¥ as a special neighborhood indicator for acquiring the ego messages of central
nodes. The aggregation guidance B,. € RN >N can be viewed as pairwise aggregation weights in
most cases, which has the multiple form B = [By, ..., B,., ..., Bg]. Tableillustrates the connection
between message passing in various HTGNNs and HTMP mechanism.
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(i1) Considering the existence of multiple neighborhoods, the COMBINE function in HTMP need to
integrate multiple messages instead of only the ego node and the raw neighborhood. Thus, the input
of the COMBINE function is a set of messages Z'. aggregated from the corresponding neighborhoods.
In HTGNNS, addition and concatenation are two common approaches, each of which has variants.
An effective COMBINE function is capable of simultaneously processing messages from various
neighborhoods while preserving their distinct features, thereby reducing the effects of heterophily.

(iii) In VMP, the final output representations are usually one of the final layers: Z = Z*. Some
HTGNNS utilize the combination of intermediate representations to leverage messages from different
localities, adapting to the heterophilous structural properties in different graphs. Thus, we introduce
an additional FUSE function in HTMP which integrates multiple representations Z' of different
layers [ into the final Z. Similarly, the FUSE function is based on addition and concatenation.

4 WHY DOES MESSAGE PASSING REMAIN EFFECTIVE IN HETEROPHILOUS
GRAPHS?

Based on HTMP mechanism, we further dive into the motivation behind the message passing of
existing HTGNNs. Our discussion begins by examining the difference between homophilous and
heterophilous graphs. Initially, we consider homophily ratios 2¢ and h", as outlined in Section
However, a single number can not indicate enough conditions for a graph. Ma et al.| (2022) propose
the existence of a special case of heterophily, named “good” heterophily, where the homophily
ratios stay low but the VMP mechanism can achieve strong performance. Thus, to better study the
heterophily property, we introduce the Compatibility Matrix (Zhu et al.,|2021a) to describe graphs:

Definition 1. Compatibility Matrix (CM): The potential connection preference among classes within
a graph. It is formatted as a matrix M € REXE where the i-th row M, denotes the connection
probabilities between class i and all classes. It can be estimated empirically as follows:

M = Norm(CTC"™), C"™ = AC, 3)

where Norm(-) denotes the L1 normalization for matrix row vectors and T is the matrix transpose
operation. C™ € RN*X s the semantic neighborhoods of nodes, which indicates the proportion of
neighbors from each class in the neighborhoods.

We first visualize the CM of a homophilous graph Photo (Shchur et al.|[2018)
in Figure[I] It displays an identity-like matrix, where the diagonal elements
can be viewed as the homophily level of each class. With this type of CM, the
VMP mechanism learns representations comprised mostly of messages from
same the class, while messages of other classes are diluted.

-2 0.04 0.00 0.02 0.00 0.00 0.04 0.00
~+0.01 [E] 0.00 0.09 0.01 0.00 0.01 0.02 ll.;0

+0.01 013 0.00 [REY 0.03 0.00 0.05 0.06 M °°

Then how does HTMP mechanism work on heterophilous graphs with po- - oo ee co oo oo
tentially chaotic CMs such as Amazon-Ratings (Platonov et al) 2023) in 77750 77 E
Figure 2(a))? The "good” heterophily inspires us, which we believe corre-

sponds to a CM with enough discriminability among classes. We conduct Figure 1: Observed
experiments on synthetic graphs to confirm this idea, with details available CM of Photo.

in Appendix [C] Also, we find “good” heterophily exists in real-world graphs though it is not as

significant as imagined. As a result, we have the following observation:

Observation 1. (Connection between CM and VMP). When enough (depends on data) discriminabil-
ity exists among classes in CM, vanilla message passing can work well in heterophilous graphs.

This observation is similar to some prior works (Ma et al.,[2022; Zhu et al., 2023 which emphasize
data while our focus is more on the message passing. Further, we have the following theorem with
detailed proof in Appendix D}

Theorem 1. The discriminability among the representations learned by the message-passing mecha-
nism is positively correlated with the discriminability among classes in the compatibility matrix.

Based on Theorem |l we have a conjecture about the reason for HTMP’s effectiveness: The
HTMP mechanism tries to enhance the discriminability of CM, which contributes to better represen-
tations. Some special designs in HTMP intuitively meet this. For example, feature-similarity-based
neighborhood indicators and neighborhood discrimination are designed to construct neighborhoods
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Figure 2: Visualizations of the compatibility matrices of Amazon-Ratings.

with high homophily, that is, an identity-like CM with high discriminability. We plot the CM of
constructed feature-similarity-based neighborhood on Amazon-Ratings in Figure [2(b)] to confirm
it. Moreover, we investigate two representative methods ACM-GCN 2022) and GPR-
GNN (Chien et al.| 2021)), showing that they also meet this conjecture with the posterior evidence in
Figurech demonstrates that they have enhanced the discriminability of CM. More
details about the posterior proof are available in Appendix [E] ACM-GCN combines the messages
from different filters with adaptive weights, which actually modifies the edge and node weights
to build a new CM. GPR-GNN has a FUSE function that integrates the CMs of multiple-order
neighborhoods with adaptive weights to form a more discriminative CM. These evidences lead to the
answer to the aforementioned question:

Observation 2. (Connection between CM and HTMP). The unified goal of various message passing
in existing HTGNNs is to utilize and enhance the discriminability of CM on heterophilous graphs.
In other words, the success of message passing in existing HTGNNs benefits from utilizing and
enhancing the discriminability of CM.

Furthermore, we notice that the power of CM is not fully released due to the

incomplete and noisy semantic neighborhoods in real-world heterophilous f0s,0.03
graphs. We use the perspective of distribution to describe the issue more
intuitively: The semantic neighborhoods of nodes from the same class
collectively form a distribution, whose mean value indicates the connection ~ wsuox
preference of that class, i.e. M; for class <. Influenced by factors such
as degree and randomness, the semantic neighborhood of nodes in real-
world graphs may display only a fraction of CM accompanied by noise.
It can lead to the overlap between different distributions as shown in
Figure [4] where the existence of overlapping parts means nodes from Figure 3: Overlap of
different classes may have the same semantic neighborhood. This brings a semantic neighborhood
great challenge since the overlapping semantic neighborhood may become ~ distribution.

redundant information during message passing.

M, 0,0.117 M,

5 METHODOLOGY

To fill this gap, we further propose a method named Compatibility Matrix-Aware GNN (CMGNN) as
shown in Figure[d] which leverages the CM to construct desired neighborhood messages as supplemen-
tary, providing valuable neighborhood information for nodes to mitigate the impact of incomplete and
noisy semantic neighborhoods. Thus, we first construct supplementary neighborhoods for all nodes
to guarantee the accessibility of messages from all classes. CMGNN follows the HTMP mechanism
and constructs a supplementary neighborhood indicator along with the corresponding aggregation
guidance to introduce supplementary messages. Further, CMGNN introduces a simple constraint to
explicitly enhance the discriminability of CM.

Supplementary Neighborhood Construction CMGNN introduces supplementary neighborhoods
to provide nodes with messages from each class. The supplementary neighborhood indicator A *“?
assigns K additional virtual neighbors for each node: A*"? = 1 € RV*K_ Specifically, these
additional neighbors are K virtual nodes, constructed as the prototypes of classes based on the labels
of the training set. Considering the sparsity of graphs, some nodes may have low degrees. Thus, the
all-one neighborhood indicator A*“P guarantees the accessibility to the messages from each class for
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Supplementary Compatibility Matrix Estimation Objective Function
Neighborhood Construction o0 ®

M = Norm((w - g - €)T)C™ @ - oo I CrossEntropy Loss:
o | s
M L.. = CrossEntropy(C, Y
> c?=A(g-C) () o7 0w 025 [ rossEintropy(C, Y)

2 046 oco 017 | 037 | |04 Discrimination Loss:

gi = log K — H(C;)

@ - ™ . 02 Lais :Zsm.(M,z,,,,.MJz,,“)
=00 e
I 'Xe 1z.¢
CM-aware Message Passing 1. Ego Messages
i !
Al =1 Bl =1,
Zl = (A, ®B,)Z "W, 2. Raw Neighborhood Messages
Z! = AdaWeight({ZL}2_,), O C ! ! -1
Ada eight({Z,}5o1), |>Z Cc~»C AL=A B,=D'1,
z= | z,
1

3. Supplementary Neighborhood Messages

=

. . .O Class Prototypes

O Each node - Virtual edges Backbone CMGNN Layers Classifier A% =A™ Bg =B = CM.
Figure 4: The overall framework of CMGNN. It contains three main parts: (1) Supplementary
Neighborhood Construction, which constructs class prototypes as additional virtual neighbors for all
nodes; (2) Compatibility Matrix Estimation and (3) CM-aware Message Passing. Parts (2) and (3) are
iterative as higher-quality predictions produce more accurate CM and vice versa.

all nodes. The attributes XP** ¢ R%*4s neighborhoods AP* € RE*N and labels YP* ¢ RE*K
of prototypes are defined as follows:

Xptt = Nom(ctrainTXtrain)a Aptt = 07 tht = 17 (4)

where Ci.qin and Xy,.qip, are the one-hot labels and attributes of nodes in the training set. Utilizing
class prototypes as supplementary neighborhoods can provide each node with representative messages
of classes, which builds the basis for desired neighborhood messages.

Compatibility Matrix Estimation. The CM can be directly calculated via Eq [3] with full-available
labels. However, the label information is not entirely available in semi-supervised settings. Thus, we
try to estimate the CM with the help of semi-supervised and pseudo labels. Since the pseudo labels
predicted by the model might be wrong, which can lead to low-quality estimation, we introduce the
confidence g € RV*! based on the information entropy to reduce the impact of wrong predictions,
where a high entropy means low confidence:

g = log K —H(C;) € [0,log K], ©)
where H(p) = — ), p; log(p;) denotes the entropy, C e RV*K s the soft pseudo labels composed
of training labels Cy,.4;,, and model predictions C which is introduced later:

A { Ctrfzin,ia v; € Vtraina (6)

C, = .
! C;, otherwise,

where Vy,-qin denotes the training set. Then the semantic neighborhoods of the nodes are calculated
considering the confidence: C" = Norm(A (g - C)) € RV*K,

In addition, the degrees of nodes also influence the estimation. As mentioned in Section[d] the
semantic neighborhood of low-degree nodes may display incomplete CM, leading to a significant gap
between semantic neighborhoods and corresponding CM. Thus, nodes with low degrees deserve low
weights during the estimation. We manually set up a weighting function range in [0, 1]:

wd = { 0.25+d;/4K, K <d; < 3K, (7
1, otherwise.

For low-degree nodes, increases in degree should yield more significant benefits compared to high-
degree nodes. Beyond a certain threshold, increases in degree yield tiny benefits. We have empirically
chosen K and 3K as fixed thresholds for the weighting function to simplify the design without
multiple attempts. This approach is straightforward and can be substituted with other forms that meet

the same criteria. Finally, we can estimate the compatibility matrix M € REXE g5 follows:
M = Norm((w? - g - C)T)C". (8)
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Note that CM is repeatedly updated during the training. For the sake of efficiency, we do not estimate
CM in each epoch. Instead, we save it as fixed parameters and only update it when the evaluation
performance is improved.

CM-aware Message Passing CMGNN aggregates messages from three neighborhoods for each
node, including the ego, raw, and supplementary neighborhoods. The first two are the most commonly
used and contain information about the central node itself and its neighbors respectively, while
the latter is a new way to utilize CM. The ego neighborhood contains messages of only node ego
regardless of any neighbors, which can be formatted as follows:

Al=1 Bi=1 zi'=7z"'" Z'=(AloB)z"'W! =z""'Wi. ©)

The raw neighborhood contains messages of raw neighbors without node ego, which meets the

ego-neighbor separation design principle (2020):
ALb=A, B,=D11, zil=z"' Z,=(ALoBLYZ "W, = D TAZI WL, (10)

The supplementary neighborhood leverages CM to provide nodes with desired neighborhood mes-
sages, which implies the averaging message within a neighborhood when a node’s semantic neigh-
borhoods meet the CM of the corresponding class, converting the discriminability from CM into
messages. It can be formatted as follows:

I __ ASup I _ psup __ AN -1 _ rzl—1
AL=A"r BL=B™=CM, z,'=12.

71 l 1\zl—1ya7l up ~ N7 - 1! an

Z; = (A3 0B3)Zy W3 = (A" O CM)Z,,; W3,
where Zi;tl are the representations of virtual prototype nodes, obtained by the same message-passing
mechanism as real nodes. The supplementary aggregation guidance B*“? indicates the desired
semantic neighborhood of nodes, i.e. the desired proportion of neighbors from each class according
to the probability that nodes belong to each class. Using soft logits instead of one-hot pseudo labels
preserves the real characteristics of nodes and reduces the impact of wrong predictions.

Considering the various situations of different nodes, we use adaptive weighted addition to combine
the messages from the above three neighborhoods. Meanwhile, the messages of multiple layers are
concatenated to reserve the information with different locality in the graph. In the perspective of
HTMP mechanism, the message passing of CMGNN cen be described as follows:

Z! = AGGREGATE(A,,B,,Z\"!) = (A, ® B,)ZL "W,

Z! = COMBINE({Z.}3_,) = AdaWeight({Z.}3_)), (12)

L
Z = FUSE({Z'}},) = || Z,
=0

where AdaWeight is the adaptive weighted addition, || denotes the concatenation. Similar to existing
methods (Luan et al} 2022} |Li et al.} 2022)), we regard topology structure as additional available node
features, which are the connection relationship among nodes, represented by the adjacency matrix
A. Eachrow A; can be viewed as an additional N-dimensional feature of the corresponding node i.
Thus, the input representation of the first layer can be obtained in two ways:

70 = XWX || AWAIW?, or Z° = XW°. (13)

Specifically, (i) using additional features, where WX € R xdr W4 ¢ RN*dr and W, € R2dr*dr
are learnable matrices; (ii) using only attribute features, where W? € R%/*?-_In practice, we use
ReLU as the activation function between layers. From the perspective of HTMP mechanism, our
special design is to introduce an additional neighborhood indicator A *“P by neighborhood redefining
and aggregation guidance B*“?, which can be seen as a form of relation estimation with good
interpretability. Meanwhile, these designs require low time and space costs by the NV x K form.

The prediction of the model is utilized during message passing. For initialization, nodes have the

same probabilities belonging to each class. During the message passing, the predicted soft label Cis
replaced by the output of CMGNN, formatted as follow:

C = CLA(Z), (14)

where CLA is a classifier implemented by an MLP and Z is the final node representation.
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Table 2: Node classification accuracy comparison (%). The error bar (+) denotes the standard
deviation of results over 10 trial runs. The best and second-best results in each column are highlighted

in bold font and underlined. OOM denotes out-of-memory error during the model training.
Dataset | Roman-Empire | Amazon-Ratings | Chameleon-F | Squirrel-F |  Actor | Flickr | BlogCatalog | Wikics | Pubmed | Photo |

2

Homo. 0.05 0.38 0.25 0.22 0.22 0.24 0.4 0.65 0.8 0.83 5
Nodes 22,662 24,492 890 2,223 7,600 7,575 5,196 11,701 19,717 7,650 @

Edges 65,854 186,100 13,584 65,718 30,019 479,476 343,486 431,206 88,651 238,162 Z

Classes 18 5 5 5 5 9 6 10 3 8

MLP | 6229+1.03 | 4266+084 | 38.66=4.02 | 36.74%1.80 | 36.70+0.85 | 89.82+0.63 | 93.57 055 | 78.94=1.22 | 87.48 +0.46 | 89.96+ 1.22 | 13.7
GCN 38.58 £2.35 45.16 £0.49 42124382 | 3847+1.82 | 30.11£0.74 | 68.25+2.75 | 78.15£0.95 | 77.53+1.41 | 87.70+0.32 | 9431 £0.33 | 13.6
GAT 59.55+1.45 47.72+0.73 40.89+3.50 | 3822+ 1.71 | 30.94+0.95 | 57.22+3.04 | 8836+ 1.37 | 76.69£0.87 | 87.45+0.53 | 94.59+£0.48 | 13.7
APPNP 70.86 + 0.69 46.06 + 0.66 42.18+4.03 | 3622+ 1.54 | 35.06+1.22 | 91.50£0.51 | 96.29+0.41 | 8433£0.73 | 89.25+0.53 | 9538 £0.36 | 8.4
GCNIL 82.53+0.37 47.53£0.72 4156 £4.15 | 40.70 £ 1.80 | 37.51£0.92 | 91.64 +0.67 | 96.48+0.62 | 84.63£0.66 | 89.96+0.43 | 95.18 £0.39 | 4.7
H2GCN 68.61 +1.05 37.20 £ 0.67 4229+4.57 | 35824220 | 33.32+0.90 | 91.25+0.58 | 96.24+0.39 | 78.34£2.01 | 89.32+0.37 | 95.66 £ 0.26 | 10.0
MixHop 79.16 £0.70 47.95+0.65 4497 +3.12 | 40.43+£1.40 | 36.97+0.90 | 91.10£0.46 | 96.21+£0.42 | 84.19+£0.61 | 89.42+0.37 | 95.63+£0.30 | 5.1
GBK-GNN 66.05 + 1.44 40.20 + 1.96 42.01 +4.89 | 36.52+1.45 | 3570+ 1.12 OOM OOM 81.07+0.83 | 88.18£0.45 | 93.48+042 | 13.7
GGCN OOM OOM 41.23+£4.08 | 36.76+£2.19 | 35.68 £0.87 | 90.84 £0.65 | 95.58 +0.44 | 84.76 £ 0.65 | 89.04+0.40 | 95.18 £0.44 | 11.3
GloGNN 68.63 +£0.63 48.62 +0.59 4095+5.95 | 36.85+1.97 | 36.66+0.81 | 90.47 £0.77 | 9451 +£0.49 | 82.83+£0.52 | 89.60+0.34 | 95.09+£0.46 | 9.5
HOGGCN OOM OOM 43.35+3.66 | 38.63+1.95 | 36.47+0.83 | 90.94£0.72 | 94.75+0.65 | 83.74 £ 0.69 OOM 9479+ 0.26 | 10.9
GPR-GNN 71.19+£0.75 46.64 £0.52 41.84+4.68 | 38.04+198 | 36.21 £0.98 | 91.19£0.47 | 96.37 +0.44 | 84.07£0.54 | 89.28+0.37 | 9548 £0.24 | 7.5
ACM-GCN 71.15+£0.73 50.64 £0.61 4520+4.14 | 40.90+1.74 | 3588 +1.40 | 91.43+£0.65 | 96.19+0.45 | 84.39+£0.43 | 89.99+0.40 | 95.52+£0.40 | 4.6
OrderedGNN 83.10+0.75 51.30 +0.61 42.07+4.24 | 37754253 | 37.22+0.62 | 91.42£0.79 | 96.27+0.73 | 85.50 £0.80 | 90.09 + 0.37 | 95.73+£0.33 | 3.8
CLP 67.36 +0.54 47.42 £0.44 41.96 +4.18 | 37.75+1.37 | 35.34+0.74 | 90.20+0.64 | 94.46+0.58 | 83.17+0.86 | 88.92+0.32 | 93.52£0.57 | 11.0
EPFGNN 43.11+0.78 4531 £0.63 44.08£4.57 | 41.10£2.52 | 30.03+1.22 | 57.91+223 | 7429+ 3.24 | 80.98 £0.57 | 87.07+0.53 | 91.08 £0.58 | 13.1
CPGNN 59.55+0.84 46.65 +0.71 4145+4.84 | 37.24+£2.09 | 3337+1.02 | 8046125 | 81.92+1.06 | 77.87£1.65 | 87.98+£0.40 | 93.35+£0.58 | 13.6
CMGNN | 8435x127 | 5213055 | 4570x4.92 | 41.89x2.34 | 36.82+0.78 | 92.66+0.46 | 97.00+0.52 | 84.50+0.73 | 89.99+0.32 | 9548029 | 2.1

Objective Function. As mentioned in Sec 4] the CMs in real-world graphs don’t always have
significant discriminability, which may lead to low effectiveness of supplementary messages. Thus, we
introduce an additional discrimination loss Lg;s to reduce the similarity of the desired neighborhood
message among different classes, which enhances the discriminability among classes in CM. The
overall loss consists of a CrossEntropy loss L. and the discrimination loss £g;:

L=Lee(Z,Y)+ Mais,  Lais = Y SIM(MiZpir, M; Zys), (15)
1#]

where Z,,; € RE*dr {5 the representation of virtual prototypes nodes. More details of CMGNN in-
cluding pseudo code are available in Appendix [F

6 BENCHMARKS AND EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of the
proposed CMGNN with a newly organized benchmark for fair comparisons.

6.1 NEW BENCHMARK

As reported in [Platonov et al.[(2023)), some widely adopted datasets in existing works have critical
drawbacks, which lead to unreliable results. Therefore, with a comprehensive review of existing
benchmark evaluation, we construct a new benchmark to fairly perform experimental validation.
Specifically, we integrate 17 representative homophilous and heterophilous GNNs, construct a unified
codebase, and evaluate their node classification performances on 10 unified organized datasets with
various heterophily levels.

Drawbacks of Existing Datasets. Existing works mostly follow the settings and datasets used
in|Pei et al.| (2020), including 6 heterophilous datasets (Cornell, Texas, Wisconsin, Actor, Chameleon,
and Squirrel) and 3 homophilous datasets (Cora, Citeseer, and Pubmed). [Platonov et al.| (2023
pointed out serious data leakages in Chameleon and Squirrel, while Cornell, Texas, and Wisconsin
are too small with very imbalanced classes. Further, we revisit other datasets and discover new
drawbacks: (i) In the ten splits of Citeseer, there are two inconsistent ones, which have smaller
training, validation, and test sets that could cause issues with statistical results; (ii) Cora’s data split
ratios are inconsistent with the expected ones. These drawbacks may lead to certain issues in the
conclusions of previous works. The details of dataset drawbacks are listed in Appendix [G.1]

Newly Organized Datasets. To avoid the issues of method comparison caused by above drawbacks,
we have collected and filtered suitable graph datasets from heterophilous GNNs methods and other
fields (e.g. Anomaly Detection). This collection spans various levels of homophily, providing a robust
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foundation for performance evaluation. The datasets used in the benchmark include Roman-Empire,
Amazon-Ratings, Chameleon-F, Squirrel-F, Actor, Flickr, BlogCatalog, Wikics, Pubmed, and Photo.
Their statistics are summarized in Table [2] with details in Appendix [G.2} For consistency with
existing methods, we randomly construct 10 splits with predefined proportions (48%/32%/20% for
train/valid/test) for each dataset and report the mean performance and standard deviation of 10 splits.

Baseline Methods. As baseline methods, we choose 17 representative homophilous and het-
erophilous GNNs, including (i) shallow base model: MLP; (ii) homophilous GNNs: GCN (Kipf &
Welling| 2017), GAT (Velickovi¢ et al.l 2018)), APPNP (Gasteiger et al., 2019), GCNII (Chen et al.,
2020); (iii) heterophilous GNNs: H2GCN (Zhu et al., [2020), MixHop (Abu-El-Haija et al.,[2019),
GBK-GNN (Du et al.| [2022), GGCN (Yan et al., 2022), GloGNN (Li et al., 2022), HOGGCN (Wang
et al.,2022), GPR-GNN (Chien et al.| [2021)), ACM-GCN (Luan et al.||2022) and OrderedGNN (Song
et al.,|2023)), (iv) compatibility matrix based methods: CLP (Zhong et al., [2022), EPFGNN (Wang
et al.,[2021), CPGNN (Zhu et al.|[2021a). For each method, we integrate its official/reproduced code
into a unified codebase and search for parameters in the space suggested by the original papers. All
methods share the same call interfaces, ensuring a fair comparison environment. More experimental
settings can be found in Appendix [G.4and

6.2 MAIN RESULTS

Following the constructed benchmark, we evaluate methods and report the performance in Table [2]

Performance of Baseline Methods. With the new benchmarks, some interesting observations and
conclusions can be found when analyzing the performance of baseline methods. First, comparing the
performance of MLP and GCN, we can find ”good” heterophily in Amazon-Ratings, Chameleon-F,
and Squirrel-F, where GCN performs better than MLP under this kind of heterophily. Meanwhile,
”bad” homophily may also exist as shown in BlogCatalog and Wikics, where the homophily level
is insufficient for vanilla message-passing methods (GCN, GAT) to outperform MLP. These results
once again support the observations about CMs. Therefore, homophilous GNNs can also work well
in heterophilous graphs as GCNII has an average rank of 4.7, which is better than most HTGNNSs.
This is attributed to the initial residual connection in GCNII actually playing the role of ego/neighbor
separation, which is suitable in heterophilous graphs. As for heterophilous GNNs, they are usually
designed for both homophilous and heterophilous graphs. Surprisingly, MixHop, as an early method,
demonstrated quite good performance. In fact, from the perspective of HTMP, it can be considered
a degenerate version of OrderedGNN with no learnable dimensions. As previous SOTA methods,
OrderedGNN and ACM-GCN prove their strong capabilities again.

Performance of CMGNN. CMGNN achieves the best performance in 6 datasets and an average
rank of 2.1, which outperforms baseline methods. This demonstrates the superiority of utilizing
and enhancing the CM to handle incomplete and noisy semantic neighborhoods, especially in
heterophilous graphs. Regarding the suboptimal performance in Actor, we believe that this is due
to the CM in this dataset are not discriminative enough to provide valuable information via the
supplementary messages and hard to enhance. In homophilous graphs, due to the identity-like CMs,
the overlap between distributions is relatively less, leading to a minor contribution from supplement
messages. Yet CMGNN still achieves top-level performances.

Comparision with CM-based methods. Some existing methods also utilize the compatibility
matrix (CM) to redefine pair-wise relations (i.e. edge weights) for existing edges, such as label
propagation in CLP, log-likelihood estimation in EPFGNN, and prior belief propagation in CPGNN.
In contrast, CMGNN leverages CM and virtual neighbors to construct supplementary messages while
preserving the original neighborhood distribution. As a result, CMGNN achieves better performances
and benefits from the approach of utilizing CM in the following aspects: (i) Better robustness for
low-quality pseudo labels; (ii) Unlock the effectiveness of CM for low-degree nodes; (iii) More
accurate estimation of CM. More detailed analyses are available in Appendix

6.3 ABLATION STUDY

We conduct an ablation study on two key designs of CMGNN , including the supplementary messages
of the desired neighborhood (SM) and the discrimination loss (DL). The results are shown in Table 3]
First of all, both SM and DL have indispensable contributions except for Flickr, BlogCatalog, and
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Table 3: Ablation study results (%) between CMGNN and three ablation variants, where SM denotes
supplementary messages of the desired neighborhoods and DL denotes the discrimination loss.

Variants ‘ R Empire ‘ Ama Ratings ‘ Ch 1 F ‘ Squirrel-F ‘ Actor ‘ Flickr ‘ BlogCatalog ‘ ‘Wikics ‘ Pubmed ‘ Photo
CMGNN | 84352127 | 5213:055 | 4570492 | 4189234 | 3682078 | 92.66+046 | 97.00£0.52 | 84504073 | 89.99+0.32 | 95.48+0.29
W/O SM 83.84 2+ 1.09 5198 £0.61 4235+421 | 4079189 | 36024121 | 92324083 | 9652£0.63 | 83.97£0.83 | 89.70 £ 044 | 9541 £ 040
W/O DL 83.68+ 124 5204£037 | 44974399 | 41.60£243 | 3628+ 112 | 92.66%0.46 | 97.00 £0.52 | 8329+ 1.83 | 89.99£0.32 | 9526035
W/OSMandDL | 83.52+ 191 SIS8+1.04 | 41124293 | 4007241 | 3561+ 148 | 92322083 | 96.52£0.63 | 81.62+ 1.67 | 89.70+0.44 | 94.66 +0.42

Table 4: Node classification accuracy (%) comparison among nodes with different degrees.

Dataset Amazon-Ratings Flickr BlogCatalog
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN ‘59.78 58.36  53.08 41.74 47.86 ‘92.56 9119 9271 93.24 93.65 ‘94.13 97.17 9829  97.99 97.47

ACM-GCN | 57.35 56.21 51.74 4155 46.47 | 9044 91.17 92.85 93.19 89.50 | 92.17 96.68 97.83  97.84 96.51
OrderedGNN | 56.32  56.16  51.20  41.85 50.26 | 86.48 90.07 9240 9279 9340 | 9219 96.09 9748  97.36 96.27
GCNII 50.61 4994 4749 4185 4776 | 87.49 90.54 9229  92.68 95.09 | 92.81 96.73  97.58  97.90 97.43

Pubmed, in which the discrimination loss has no effect. Specifically, the best choice of parameter
A on these datasets is 0 thus resulting in the identical performance in both "CMGNN” and "W/O
DL” settings. This may be due to the discriminability of desired neighborhood messages reaching
the bottlenecks and can not be further improved by DL. Meanwhile, the extent of their contributions
varies across datasets. SM plays a more important role in most datasets except Roman-Empire,
Wikics, and Photo, in which the number of nodes that need supplementary messages is relatively
small and DL has great effects. Further, we notice that with SM and DL, CMGNN can reach a
smaller standard deviation most of the time. This illustrates that CMGNN achieves more stable
results by handling nodes with incomplete and noisy semantic neighborhoods. As for the opposite
result on Chameleon-F, this may attributed to the small size of this dataset (890 nodes), which can
lead to naturally unstable results.

6.4 PERFORMANCE ON NODES WITH VARIOUS LEVELS OF DEGREES

To verify the effect of CMGNN on nodes with incomplete and noisy semantic neighborhoods, we
divide the test set nodes into 5 parts according to their degrees and report the classification accuracy
respectively. We compare CMGNN with 3 top-performance methods and show the results in Table ]
In general, nodes with low degrees tend to have incomplete and noisy semantic neighborhoods.
Thus, our outstanding performances on the top 20% nodes with the least degree demonstrate the
effectiveness of CMGNN for providing desired neighborhood messages. Further, we can find that
OrderedGNN and GCNII are good at dealing with nodes with high degrees, while ACM-GCN is
relatively good at nodes with low degrees. And CMGNN , to a certain extent, can be adapted to both
situations at the same time.

More detailed experimental results can be found in Appendix [H:2} such as more ablation studies,
scalability studies on large-scale graphs, comprehensive complexity analysis and comparison.

7 CONCLUSION AND LIMITATIONS

In this paper, we revisit the message-passing mechanism in existing heterophilous GNNs and
reformulate them into a unified heterophilous message-passing (HTMP) mechanism. Based on the
HTMP mechanism and empirical analysis, we reveal that the reason for message passing remaining
effective is attributed to implicitly enhancing the compatibility matrix among classes. Further, we
propose a novel method CMGNN to unlock the potential of the compatibility matrix by handling the
incomplete and noisy semantic neighborhoods. The experimental results show the effectiveness of
CMGNN and the feasibility of designing a new method following HTMP mechanism. We hope the
HTMP mechanism and benchmark can further provide convenience to the community.

This work mainly focuses on the message-passing mechanism in existing HTGNNs under the
semi-supervised setting. Thus, the other designs in HTGNNSs such as objective functions are not
analyzed in this paper. The proposed HTMP mechanism is suitable for only a large part of existing
HTGNNSs which still follow the message passing mechanism.

10
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A RELATED WORKS

Homophilous Graph Neural Networks. Graph Neural Networks (GNNs) have showcased impres-
sive capabilities in handling graph-structured data (Wu et al.| 2020; [Chen et al.,2024). Traditional
GNNs are predominantly founded on the assumption of homophily, broadly categorized into two
classes: spectral-based GNNs and spatial-based GNNs. Firstly, spectral-based GNNs acquire node
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representations through graph convolution operations employing diverse graph filters (Kipf & Welling|
2017}, |[Detferrard et al.,[2016} |Xu et al.,[2018a). Secondly, spatial-based methods gather information
from neighbors and update the representation of central nodes through the message-passing mecha-
nism (Gasteiger et al.| 2019} |VelickovicC et al.| 2018; [Hamilton et al.,|2017). Moreover, for a more
comprehensive understanding of existing homophilous GNNs, several unified frameworks (Ma
et al., [2021; [Zhu et al., 2021b) have been proposed. Ma et al.| (2021) propose that the aggregation
process in some representative homophilous GNNs can be regarded as solving a graph denoising
problem with a smoothness assumption. Zhu et al.| (2021b) establishes a connection between various
message-passing mechanisms and a unified optimization problem. However, these methods have
limitations, as the aggregated representations may lose discriminability when heterophilous neighbors
dominate (Bo et al., 2021} [Zhu et al., [2020).

Heterophilous Graph Neural Networks. Recently, some heterophilous GNNs have emerged to
tackle the heterophily problem (Bo et al.| 20215 Zhu et al.,[2020; Jin et al.| 2021a3bj; [Pei et al., 2020;
Abu-El-Haija et al., [2019; Wang et al.| 2022} [Luan et al., [2022; [Li et al., 2022} |Chien et al., 2021}
Song et al., 2023} [Suresh et al.| 2021} [Yan et al., 2022). Firstly, a commonly adopted strategy
involves expanding the neighborhood with higher homophily or richer messages, such as high order
neighborhooods (Zhu et al., |2020; Jin et al., 2021a), feature-similarity-based neighborhoods (Jin
et al.| 2021azb)), and custom-defined neighborhoods (Pei et al., 2020} [Suresh et al.| [2021). Secondly,
some approaches (Bo et al., [2021; [Wang et al.} |2022; [Luan et al.| 2022} [Li et al., 2022} |Yan et al.}
2022) aim to leverage information from heterophilous neighbors, considering that not all heterophily
is detrimental et al.(Ma et al.| 2022)). Thirdly, some methods (Zhu et al., 2020; |Abu-El-Haija et al.|
2019; |Chien et al.,[2021} Song et al.,|2023) adapt to heterophily by extending the combine function
in message passing, creating variations for addition and concatenation.

Reviewing Heterophilous Graph Neural Networks. Due to heterophilous GNNs have attracted
more and more research attention. Some surveys have provided a macroscopic view for reviewing
heterophilous GNNss, categorizing heterophilous GNNs with shallow analysis. Specifically, Zheng
et al| (2022) categorizes the designs of heterophilous GNNs into non-local neighbor extensions
and GNN architecture refinement. [Zhu et al.| (2023) examines the impact of heterophilous graph
characteristics on GNNs. For categorizations, it simply lists some effective designs in heterophilous
GNNs. Gong et al.[(2024) reviews heterophilous graph learning, where message passing is only a
minor aspect of its taxonomy with a broader view. However, these works offer guidance primarily
at the conceptual level and categorize existing heterophilous GNNs based on literature summaries,
lacking in-depth analysis of message-passing mechanisms. In this paper, we provide a uniform
symbolic form and categorize existing methods based on the values of component modules. Further,
our review guides the design of new SOTA heterophilous message-passing mechanisms.

B MORE DETAILS OF HTMP MECHANISM

In this part, we list more details about the HTMP mechanism, including additional analysis about
HTMP, method-wise analysis, and overall analysis.

B.1 ADDITIONAL ANALYSIS OF HTMP MECHANISM
B.1.1 NEIGHBORHOOD INDICATORS

The neighborhood indicator explicitly marks the neighbors of all nodes within a specific neighbor-
hood. In existing heterophilous GNNs, neighborhood indicators typically take one of the following
forms: (i) Raw Neighborhood (Raw); (ii) Neighborhood Redefining (ReDef); and (3) Neighborhood
Discrimination (Dis).

Raw Neighborhood. Raw neighborhood, including A and A, provides the basic neighborhood
information. The only difference between them is whether there is differential treatment of the node’s
ego messages. For example, APPNP (Gasteiger et al., 2019) applies additional weighting to the ego
messages of nodes compared to GCN (Kipf & Welling, 2017). In heterophilous GNNs, ego/neighbor
separation is a common strategy that can mitigate the confusion of ego messages with neighbor
messages.
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Neighborhood Redefining. Neighborhood redefining is the most commonly used technique in
heterophilous GNNs, aiming to capture additional information from new neighborhoods. As a repre-
sentative example, high-order neighborhood A}, can provide long-distance connection information
but also result in additional computational costs. Feature-similarity-based neighborhood A ¢ is often
defined by the k-NN relationships within the feature space. Fundamentally, it only utilizes node
features and thus needs to be used in conjunction with other neighborhood indicators. Otherwise,
the model will be limited by the amount of information in node features. GIoGNN (Li et al.,2022)
introduces fully-connected neighborhood 1 € RN >N which can capture global neighbor information
from all nodes. However, it can also cause significant time and space consumption. Additionally,
there are some custom-defined neighborhood A .. For example, Geom-GCN (Pei et al., 2020) rede-
fines neighborhoods based on the geometric relationships between node pairs. These neighborhood
indicators may have limited generality, and the effectiveness is reliant on the specific method.

Neighborhood Discrimination. Neighborhood discrimination aims to mark whether neighbors share
the same label with central nodes. The neighborhoods are partitioned into positive A, and negative
ones A, which include homophilous and heterophilous neighbors respectively. GGCN (Yan et al.|
2022) divides the raw neighborhood based on the similarity of node representations with a threshold
of 0. Explicitly distinguishing neighbors allows for targeted processing, making the model more
interpretable. However, its performance is influenced by the accuracy of the discrimination, which
may lead to the accumulation of errors.

B.1.2 AGGREGATION GUIDANCE

After identifying the neighborhood, the aggregation guidance controls what type of messages to
gather from the corresponding neighbors. The existing aggregation guidance mainly includes three
kinds of approaches: (1) Degree Averaging (DegAvg), (2) Adaptive Weights (AdaWeight), and (3)
Relationship Estimation (RelaEst).

Degree Averaging. Degree averaging, formatted as B¢ = D~ 21D~ 2 or B = D11, is the most
common aggregation guidance, which plays the role of a low-pass filter to capture the smooth signals
and is fixed during model training. Further, combining negative degree averaging with an identity
aggregation guidance I € RV X can capture the difference between central nodes and neighbors, as
used in ACM-GCN (Luan et al,[2022)). Degree averaging is simple and efficient but depends on the
discriminability of corresponding neighborhoods.

Adaptive Weights. Another common strategy is allowing the model to learn the appropriate ag-
gregation guidances B*". GAT (Velickovic et al., 2018)) proposes an attention mechanism to learn
aggregate weights, which guides many subsequent heterophilous methods. To better handle het-
erophilous graphs, FAGCN (Bo et al.l 2021) introduces negative-available attention weights B”**
to capture the difference between central nodes and heterophilous neighbors. Adaptive weights can
personalize message aggregation for different neighbors, yet it’s difficult for models to attain the
desired effect.

Relationship Estimation. Recently, some methods have tried to estimate the pair-wise relationships
B¢ between nodes and use them to guide message aggregation. HOG-GCN (Wang et al., 2022) esti-
mates the pair-wise homophily levels between nodes as aggregation guidances based on both attribute
and topology space. GIoGNN (Li et al.| [2022)) treats all nodes as neighbors and estimates a coefficient
matrix as aggregation guidance based on the idea of linear subspace expression. GGCN (Yan et al.,
2022) estimates appropriate weights for message aggregation with the degrees of nodes and the
similarities between node representations. Relationship estimation usually has theoretical guidance,
which brings strong interpretability. However, it may also result in significant temporal and spatial
complexity when estimating pair-wise relations.

B.1.3 COMBINE FUNCTION

After message aggregation, the COMBINE functions integrate messages from multiple neighborhoods
into layer representations. COMBINE functions in heterophilous GNNs are commonly based on
two operations: addition and concatenation, each of which has variants. To merge several messages
together, addition (Add) is a naive idea. Further, to control the weight of messages from different
neighborhoods, weighted addition (WeightedAdd) is applied. However, it is a global setting and
cannot adapt to the differences between nodes. Thus, adaptive weighted addition (AdaAdd) is
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proposed, which can learn personalized message combination weights for each node, but it will result
in additional time consumption. Although the addition is simple and efficient, some methods (Zhu
et al.L[2020; |Abu-El-Haija et al., 2019) believe that it may blur messages from different neighborhoods,
which can be harmful in heterophilous GNNs, so they employ a concatenation operation (Cat) to
separate the messages. Nevertheless, such an approach not only increases the space cost but may
also retain additional redundant messages. To address these issues, OrderedGNN (Song et al., 2023)
proposes an adaptive concatenation mechanism (AdaCat) that can combine multiple messages with
learnable dimensions. This is an innovative and worthy further exploration practice, but the difficulty
of model learning should also be considered.

B.1.4 FUSE FUNCTION

Further, the FUSE functions integrate messages from multiple layers into the final representation.
For the FUSE function, utilizing the representation of the last layer as the final representation is
widely accepted: Z = Z*. JKNet (Xu et al., 2018b) proposes that the combination of representations
from intermediate layers can capture both local and global information. H2GCN (Zhu et al., 2020)
applies it in heterophilous graphs, preserving messages from different localities with concatenation.
Similarly, GPRGNN (Chien et al., [2021) combines the representations of multiple layers into the
final representation through adaptive weighted addition.

B.1.5 AGGREGATE FUNCTION

The most commonly used AGGREGATE function is AGGREGATE(A,,B,,Z\"!) = (A, ®
B,)Z!"'W!. We take this as the fixed form of the AGGREGATE function following. Actually, the
input representations Z ! and weight matrixes W, also can be specially designed. Taking the initial
node representations Z° as input is a relatively common approach as in APPNP (Gasteiger et al.,
2019), GCNII (Chen et al., [2020), FAGCN (Bo et al., 2021)) and GloGNN (L1 et al.||2022). Further,
GCNII (Chen et al.| 2020) adds an identity matrix I, to the weight matrixes to keep more original
messages. However, the methods that specially design these components are few and with a similar
form. Thus, we don’t discuss them too much, but leave it for future extensions.

B.2 REVISITING REPRESENTATIVE GNNS WiITH HTMP MECHANISM

In this part, we utilize HTMP mechanism to revisit the representative GNNs. We start from ho-
mophilous GNNs as simple examples and further extend to heterophilous GNNs.

B.2.1 GCN

Graph Convolutional Networks (GCN) (Kipf & Welling, [2017) utilizes a low-pass filter to gather
messages from neighbors as follows:

7! — AZ W' (16)
It can be revisited by HTMP with the following components:

A=A, By=B‘=D":1D":2,
s (17
Z' =7\ = (Agy ©By)Z'W! = AZTTW

Specifically, GCN has a raw neighborhood indicator A and a degree averaging aggregation guidance
B¢. Since there is only one neighborhood, the COMBINE function is meaningless in GCN. GCN
utilizes a naive way to fuse messages about the original neighborhood and central nodes. However, it
may confuse the representations in heterophilous graphs.

B.2.2 APPNP

PPNP (Gasteiger et al.,[2019) is also a general method whose message passing is based on Person-
alized PageRank (PPR). To avoid massive consumption, APPNP is introduced as the approximate
version of PPNP with an iterative message-passing mechanism:

Z! = puZ° + (1 — p)AZ. (18)
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It can be revisited by _with the following components:
A=[Ag, Ay], B=[By, By,
Ag=1 Bo=1 W,=1I
Zi = (Ao © Bo)Z"W(, = Z°, (19)
Ai=A, B, =D 21D 3, W.=1I,
Z\ = (A, ©B)Z "W, = Az
Specifically, APPNP aggregates messages from node ego and neighborhoods separately and combines
them with a weighted addition. Compared with GCN, APPNP assigns adjustable weights to nodes,

for controlling the proportion of ego and neighbor messages during message-passing, which becomes
a worthy design in heterophilous graphs.

B.2.3 GAT

Going a step further, Graph Attention Networks (GAT) (Velickovic et al., |2018)) allows learnable
weights for each neighbor:

! I-1yx7!
Zi = Z aiij W B (20)
JEN (i)

where «;; is the weight for aggregating neighbor node j to center node 4, whose construction process
is as follows:
_ exp(e;;)

D ken @) exp(eir)’ 1)
e;; = LeakyReLU ([Z{'|Z} '] a) .

(2%

Let P¢AT be the matrix of aggregation weights in GAT:
PSAT — { 0357 Zj ; (1)’ . (22)
HTMP can revisit GAT with the following components:
Ag=A, B;=B" =P
7' = ZL = (Ay © By)ZI"'W! = PeATZI-1wi,
which is the matrix version of Eq[20] Specifically, GAT aggregate messages from raw neighborhood

A with adaptive weights B®*. Aggregation guidance with adaptive weights is a nice idea, but simple
constraints are not enough for the model to learn ideal results.

(23)

B.2.4 GCNII

GCNII (Chen et al., [2020) is a novel homophilous GNN with two key designs: initial residual
connection and identity mapping, which can be formatted as follows:

7! = (oéz0 +(1- a)]j’%A]j’%Zl’I) (BW' + (1 - B)L,) (24)
where o and 3 are two predefined parameters and I, € R% X" is an identity matrix.
From the perspective of HTMP, it can be viewed as follows:
A=[LA], B=[LBY, W),=W!=(BW +(1-8L,),
Z)=(1oDZ° (BW' + (1 -B)L,) = Z° (BW' + (1 - B)L,), (25)
Z! = (A©BYZ! (BW! + (1 - B)L,) = AZ" (BW! + (1 — B)L,) ,

where the COMBINE function is weighted addition. Specifically, the first design of GCNII is a form
of ego/neighbor separation, and the second design is a novel transformation weights matrix. This can
also be specially designed, but only GCNII does this, so we won’t analyze it too much and leave it as
a future extension.
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B.2.5 GEoOM-GCN

Geom-GCN (Pei et al., [2020) is one of the most influential heterophilous GNNs, which employs
the geometric relationships of nodes within two kinds of neighborhoods to aggregate the messages
through bi-level aggregation:

z' = Iz, | W
i€{g,s} TER ’ (26)
_1 _1

Z,,=D;?A;,D, 27"

where || denotes the concatenate operator, {g, s} is the set of neighborhoods including the original
graph and the latent space. R is the set of geometric relationships. A; , is the corresponding adjacency
matrix in neighborhood ¢ and relationship 7.

It can be revisited by HTMP with the following components:

A=[A;,li€{g,s},reR], B= [BZTHZ' € {g,s},r € R],

- 1 (27)
Zi,r = (Ai.,r © Blii,r)zlflwé,r = Di,TQ Aiﬂ”Dz

%Zlflwl_

T i,

where the COMBINE function is concatenation and the weight matrix W' in Eq can be viewed as
the combination of multiple Wﬁr Specifically, Geom-GCN redefines multiple neighborhoods based
on the customized geometric relations in both raw and latent space. The messages are aggregated
from each neighborhood and combined by a concatenation. This approach may be applicable to some
datasets, yet it has weak universality.

B.2.6 H2GCN

H2GCN (Zhu et al., [2020) is also an influential method with three key designs: ego- and neighbor-
message separation, higher-order neighborhoods, and the combination of intermediate representations.
Its single-layer representations are constructed as follows:

7! = Azt | Ahgzl—l} : (28)

where Ahg denotes the 2-order adjacency matrix with normalization.

It can be revisited by HTMP with the following components:
A=[A,Ap), B=[B.Bj,], Wi=W]=1L
Z\ = (A®BYHZ 1= AZ Y, (29)
Z) = (A ©BL)Z T = AjpZ' 7,

where the COMBINE function is concatenation. Meanwhile, H2GCN also uses the concatenation
as the FUSE function. Specifically, H2GCN aggregates messages from the raw and 2-order neigh-
borhoods in a layer of message passing and keeps them apart in the representations. The design
of ego/neighbor separation is first introduced by H2GCN and gradually becomes a necessity for
subsequent methods.

B.2.7 SiMP-GCN

SimP-GCN (Jin et al., [2021b) constructs an additional graph based on the feature similarity. It has
two key concepts: (1) the information from the original graph and feature kNN graph should be
balanced, and (2) each node can adjust the contribution of its node features. Specifically, the message
passing in SimP-GCN is as follows:

7! = (diag(sl)fx +diag(1 — ')A + 9D ) 2 W, (30)

where s' € R™ is a learnable score vector that balances the effect of the original and feature graphs,
DL = diag(K!, K}, ..., K!) is a learnable diagonal matrix.
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It can be revisited by HTMP with the following components:
A=[LA A, B=[LB%BY,

Z, = 100z 'W! = Z-'W!,

Z! = (A © BHZ'W! = AZ- W S
1 — - )

Zh=(A; OBHZ W' = A, Z' "W,

where the COMBINE function is adaptive weighted addition. Specifically, SimP-GCN aggregates
messages from ego, raw and feature-similarity-based neighborhoods, and combines them with
node-specific learnable weights. The feature-similarity-based neighborhoods can provide more
homophilous messages to enhance the discriminability of the compatibility matrix. However, it’s still
limited by the amount of information on node features.

B.2.8 FAGCN

FAGCN (Bo et al.||2021) proposes considering both low-frequency and high-frequency information
simultaneously, and transferring them into the negative-allowable weights during message passing:

b
7l = 70 + 7(114]d-zé'71’ (32)
JEN; v
where ag- can be negative as follows:
of) = tanh(g" [X; [ X;]), (33)
which can form a weight matrix:
e
FAG _ ) a5, Ay =1,
Pz] - { 07 A’L] — O (34)

It can be revisited by HTMP with the following components:
A=[LA], B=[LD :PD 3], W,=W!|=1,
ZV= 16021 =12°, (35)
Z! = (Ao D :PFAGD )z "I = D :PFAGD 32!,

where the COMBINE function is weighted addition, same as the matrix form of Eq[32] Specifically,
FAGCN aggregates messages from node ego and raw neighborhood with negative-allowable weights.
It has a similar form to GAT but allows for ego/neighbor separation and negative weights, which
means the model can capture the difference between center nodes and neighbors.

B.2.9 GGCN

GGCN (Yan et al.| [2022) explicitly distinguishes between homophilous and heterophilous neighbors
based on node similarities, and assigns corresponding positive and negative weights:

Z' = o (B2 + B1(Shos © AT)Z! + B (S, © A)ZT) (36)

where Z! = Z'W! +-b!, AL = A © T7 is an adjacency matrix weighted by the structure property,
b, 8L and B are learnable scalars. The neighbors are distinguished by the cosine similarity of node
representations with a threshold of 0:

Sﬁj _ { COSiHC(Zi,Z]‘), 7 #]& Aij = 1,

0, otherwise. ’
St.. Sl.>90
Sl = i3 1] e 37
Ppos, ij 0, otherwise. ’ G
g St, Si <o,
neg, ij 0, otherwise.
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It can be revisited by HTMP with the following components:
A=[LAy, A, B=[LS,, 0T, S, o))

pos

Zh=(16o0Z""'W =2'"'W',

- (38)
Z\=(A, 08, 0THZ'W! = (8., 0 THZ"'W',
Zh= (A, 08, 0Tz "W = (8! 0Tz W,
where A, and A, are discriminated by the representation similarities:
J— ’ pos,ij L] ’
Apij { 0, otherwise. ’
(39)

1 Siy,e < 0&A;; =1
=1 9:1d S
Anij { 0, otherwise.

The COMBINE function is an adaptive weighted addition. Specifically, GGCN divides the raw
neighborhood into positive and negative ones based on the similarities among node presentations.
On this basis, it aggregates messages from node ego, positive and negative neighborhoods, and
combines them with node-specific learnable weights. This approach allows for targeted processing
for homophilous and heterophilous neighbors, yet can suffer from the accuracy of discrimination,
which may lead to the accumulation of errors.

B.2.10 ACM-GCN

ACM-GCN (Luan et al.,|2022) introduces 3 channels (identity, low pass, and high pass) to capture
different information and mixes them with node-wise adaptive weights:

Z! = diag(a})Z' "W + diag(oh )AZI "W + diag(al; ) (I — A)Z W (40)
where diag(a!), diag(al ), diag(al;) € RV*! are learnable weight vectors.
It can be revisited by HTMP with the following components:

A=A A, B=[LB.I-B,
Z)=(1oDZ""'W! = z'"'W!,

Z\ = (AOBYHZ'W!, = AZT'W,

Z,= (Ao (I-BY)Z'Wy = (1-A)Z'"'W,

where the COMBINE function is adaptive weighted addition. Specifically, ACM-GCN aggregates
node ego, low-frequency, and high-frequency messages from ego and raw neighborhoods, and
combines them with node-wise adaptive weights. With simple but effective designs, ACM-GCN
achieves outstanding performance, which shows that complicated designs are not necessary.

(41)

B.2.11 GPR-GNN

GPR-GNN (Chien et al.,|2021) integrates messages from multiple-order neighborhoods with adaptive
weights:

K
Z=) vz 7' =D *AD":Z'"!, (42)
1=0
where ~; are learnable weights.
It can be revisited by HTMP with the following components:
Ay=A, By=B¢ W,=1I,

7 = 7L — (Ay © By)Z'W! = AZI 1,
0= (Ao ®Bo) 0 43)

K
Z = Fuse(Z') = Z’ylZl.
1=0
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where the Fuse function is adaptive weighted addition.

Specifically, GPR-GNN has a Fuse function with adaptive weights and no feature transformation
between layers, while other settings are the same as GCN. It can gather messages from neighbors of
different hops and construct more discriminative representations.

B.2.12 ORDEREDGNN

OrderedGNN (Song et al., 2023) is a SOTA method that introduces a node-wise adaptive dimension
concatenation function to combine messages from neighbors of different hops:

Z'=P,oZ™ +(1-P) o (AZ), (44)

where P, € RYV*4r is designed to be matrix with each line P!, ; being a dimension indicate vector,
which starts with continuous 1s while the others be Os. In practice, to keep the differentiability, it’s
’soften” as follows:

f’ld = cumsum,_ <s0ftmax (fgl (Zl_l, AZl_l))) ) 45)
P!, = SOFTOR(P} !, P}),

where fé is a learnable layer that fuses two messages.

It can be revisited by HTMP with the following components:
A=[LA], B=[LBY, W,=W|=1I
Zh=(1onz""' =271, (46)
Z\ = (AeBYHZI- = Az,

where the COMBINE function is concatenated with node-wise adaptive dimensions. Specifically, in
each layer, OrderedGNN aggregates messages from node ego and raw neighborhood and concatenates
them with learnable dimensions. Combined with the multi-layer architecture, this approach can
aggregate messages from neighbors of different hops and combine them not only with adaptive
contributions but also as separately as possible.

B.3 ANALYSIS AND ADVICE FOR DESIGNING MODELS

The HTMP mechanism splits the message-passing mechanism of HTGNNSs into multiple modules,
establishing connections among methods. For instance, most messages passing in HTGNNs have
personalized processing for nodes. Some methods (Du et al., 2022 |Bo et al., 2021 Jin et al., [2021a;
Suresh et al., [2021) utilize the learnable aggregation guidance and some others (Jin et al.,|2021bj
Luan et al., 2022; |Song et al., |2023; [Yan et al., [2022) count on learnable COMBINE functions.
Though neighborhood redefining is commonly used in HTGNNS, there are also many methods (Du
et al.}2022;[Bo et al.| 2021} [Luan et al., 2022} |Chien et al.| 2021} |Song et al.,|2023) using only raw
neighborhoods to handle heterophily and achieve good performance. Degree averaging, which plays
the role of a low-pass filter to capture the smooth signals, can still work well in many HTGNNSs (Zhu
et al.}2020; Jin et al., [2021b; |Pei et al., 20205 |/Abu-El-Haija et al., [2019} |Chien et al.,2021). High-
order neighbor information may be helpful in heterophilous graphs. Existing HTGNNS utilize it
in two ways: directly defining high-order (Zhu et al., [2020; |Jin et al.l [2021a; |Abu-El-Haija et al.|
2019; [Wang et al.,|2022) or even full-connected (Li et al.,[2022) neighborhood indicators and by the
multi-layer architecture of message passing (Chien et al.,[2021} |Song et al., 2023).

With the aid of HTMP, we can revisit existing methods from a unified and comprehensible perspective.
An obvious observation is that the coordination among designs is important while good combinations
with easy designs can also achieve wonderful results. For instance, in ACM-GCN (Luan et al.,
2022), the separation and adaptive addition of ego, low-frequency, and high-frequency messages
can accommodate the personalized conditions of each node. OrderedGNN'’s design (Song et al.|
2023)), which includes an adaptive connection mechanism, ego/neighbor separation, and multi-layer
architecture, allows discrete and adaptive combinations of messages from multi-hop neighborhoods.
This advises us to take into account all components simultaneously when designing models. As
an illustration, please be cautious about using multiple learnable components. Also, here are some
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Figure 5: The visualization of compatibility matrix on synthetic graphs.

additional model design tips and considerations. Please separate the messages from node ego and
neighbors. When combining them afterward, whether by weighted addition or concatenation, this
approach is at least harmless if not beneficial, especially when dealing with heterophilous graphs.
Last but not least, try to design a model capable of personalized handling different nodes. Available
components include but are not limited to, custom-defined neighborhood indicators, aggregation
guidance with adaptive weights or estimated relationships, and learnable COMBINE functions. This
is to accommodate the diversity and sparsity of neighborhoods that nodes in real-world graphs may
have.

C THE DETAIL OF EXPERIMENTS ON SYNTHETIC DATASETS

To explore the performance impact of homophily level, node degrees, and compatibility matrix (CMs)
on simple GNNs, we conduct some experiments on synthetic datasets.

C.1 SYNTHETIC DATASETS

We construct synthetic graphs considering the factors of homophily, CMs, and degrees. For homophily,
we set 3 levels including Lowh (0.2), Midh (0.5), and Highh (0.8). For CMs, we set two levels of
discriminability, including Easy and Hard. For degrees, we set two levels including Lowdeg (4)
and Highdeg (18). Note that with a certain homophily level, we can only control the non-diagonal
elements of CMs. Thus, there are a total of 12 synthetic graphs following the above settings. These
synthetic graphs are based on the Cora dataset, which provides node features and labels, which means,
only the edges are constructed. We visualize the CMs of these graphs in Figure[5] Since there is no
significant difference in CMs between low-degree and high-degree, we only plot the high-degree
ones. Further, the edges are randomly constructed under the guidance of these CMs and degrees to
form the synthetic graphs.

C.2 EXPERIMENTS ON SYNTHETIC DATASETS

We use GCN to analyze the performance impact of the above factors. The semi-supervised node
classification performance of GCN is shown in Table[5]while the baseline performance of MLP (72.54
+ 2.18) is the same among these datasets since their difference is only on edges. From these results,
we have some observations: (1) high homophily is not necessary, GCN can also work well on low
homophily but discriminative CM; (2) low degrees have a negative impact on performance, especially
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Table 5: Node classification accuracy of GCN on synthetic datasets.
Factors ‘ Highh, Esay Highh, Hard ‘ Midh, Easy Midh, Hard ‘ Lowh, easy Lowh, Hard

Highd | 99.15+0.35 9948+0.24 | 86.42+4.13 90.52+1.05 | 89.34 +2.19 39.22+234
Lowd | 89.98+159 91.25+0.85 | 70.85+1.59 70.20+1.41 | 56.46+2.63 4091 *1.75

when the CMs are relatively weak discriminative, this also indicates that nodes with lower degrees
are more likely to have confused neighborhoods; and (3) when dealing with nodes with confused
neighborhoods, GCN may contaminate central nodes with their neighborhoods’ messages, which
leads to performance worse than MLP. This once again reminds us of the importance of ego/neighbor
separation.

D THEORETICAL PROOF

To prove Theorem |I] we start with an assumption:

Assumption 1. The semantic neighborhood C™ of each node follows a class-specific distribution
guided by CM, where C'* = L3 JEN() C; indicates the proportion of neighbors from each class

d;
in node i’s neighborhood.

According to Assumption [I] the discriminability in CM is positively correlated with the discrim-
inability in semantic neighborhoods. Thus, if the message-passing mechanism is able to preserve
the discriminability of the semantic neighborhood in the obtained representations, then Theorem I]
holds. It would be sufficient if each distinct semantic neighborhood corresponds to a different output
representation, in other words, the message-passing mechanism is an injective function for modeling
semantic neighborhoods. We further state two assumptions:

Assumption 2. The input node messages Z'~1 of the message-passing layer exhibit clustering
characteristics, where the average distance within a class is significantly smaller than the average
distance between different classes.

This implies that the input messages of nodes from the same class are linearly correlated within a
certain range of error.

Assumption 3. The clustering centers of each class’s input messages exist, formatted as K prototypes
{Ck|k7 el, ..., K}

Taking the most general mean aggregation as an example, we have the following theorem:

Theorem 2. Let MEAN ({Zé-_1 |7 € N(i)}) be mean operator that aggregate neighbor messages

for node i, ¢y, be the prototype of k-th class. Function MEAN({Z'~'|j € N'(i)}) is approximately
injective if it is satisfied that all class prototypes cy, are orthogonai to each other.

The injectivity ensures that each element in the domain of the input (i.e. semantic neighborhoods
and neighbor messages) has a distinct and unique output in the output domain. We find that as long
as the conditions of Theorem [2|are satisfied, the mean aggregation can be regarded as an injective
function within a certain range of error. Thus, the whole message-passing mechanism can be an
approximately injective function for modeling the semantic neighborhoods when the COMBINE
function is also injective, which can be easily satisfied. In practice, the orthogonality of prototypes is
hard to be satisfied completely but the difference among prototypes is still significant. Thus, even
if the message-passing mechanism is not completely injective, most of the discriminability can be
preserved, making Theorem |1|hold.

Proof of Theorem[2] Firstly, we have the following lemma:

Lemma 1. Injectivity is equivalent to null space equals {0}. Let T € L(V, W), T is injective if and
only if null(T) = {0}.
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Proof of Lemmall] We make the proof of Lemma [I] from the perspectives of both its sufficiency and
necessity as follows:

Sufficiency: First, suppose T is injective. We want to prove that null(T) = {0}. We already know
that {0} C null(T). Suppose v € null(T), then T'(v) = 0 = T(0). Because T is injective, the
equation implies that v = 0. Thus we can conclude that null(T) = {0}, as desired.

Necessity: Suppose null(T) = {0}, u,v € V.If T'(u) = T'(v), then T'(u) — T'(v) = T'(u —v) = 0.
Thus v — v = 0, which implies that « = v. Hence T is injective, as desired. O

Having Lemmaproved, now we express the mean aggregation in the form of PZ"® = b, where
P e R denotes the mean aggregation operator, Z™ e RV ()Ixdr is the matrix consist of
neighbor messages and b is the resulting representation. Assuming that the messages of neighbors
from the same class are linearly dependent, we can rewrite the equation as P'ZP =~ b, where
P’ € RY™X is a weighted mean operator, ZP € R¥*?" is a matrix consisting of the prototypes
{ck|k € 1,..., K} of K classes.

The injectivity of mean aggregation operator P involves considering the solution for P'Z? = 0.
Clearly, if it is satisfied that all ¢; are orthogonal to each other, the null space null(P’) = {0},
indicating that the mean aggregation operator is approximately injective, as desired. O

The above analyses provide theoretical support for Observation [T] and Observation 2] Based on
Theorem [T} VMP can work well with discriminative CM regardless of homophily levels and HTMP
can achieve better performance by enhancing the discriminability of CM.

E EMPIRICAL EVIDENCE FOR THE CONJECTURE ABOUT CM

In this part, we give the details of the empirical evidence for the conjecture mentioned in Sec[d} The
detailed method of ACM-GCN and GPR-GNN can be seen in[B.2.10]and[B.2.TT1} The desired CMs
are obtained as follows:

* For ACM-GCN, we leverage the learned weights in the COMBINE function to rebuild a
weighted adjacency matrix A“*“™ based on the low-pass filter A and high-pass filter I — A,
then regard A®“™ as the neighborhood and calculate the desired CM.

* For GPR-GNN, we utilize the leaned weights in the FUSE function to rebuild a weighted
adjacency matrix A9P" based on the multi-hop adjacency matrixes [I, A, A%, ..., A*] then
regard A9P" as the neighborhood and calculate the desired CM.

F ADDITIONAL DETAILED IMPLEMENTATION OF CMGNN

Overall Message Passing Mechanism. The overall message passing mechanism in CMGNN is
formatted as follows:

Z! = diag(a))Z' W + diag(al )AZ! " W + diag(ab) (AP © B¥*P)Z!"'W,
ﬁ (47)

Z= | Z,

1=0
where diag(al)), diag(a), diag(al) € RV*! are the learned combination weights introduced below.

COMBNIE Function with Adaptive Weights. Firstly, we list the aggregated messages Zi from 3
neighborhoods:

Z, =7""'W), Z! = AZ""'W!,

~ ) (48)

Zl2 _ (Asup ® B“‘P)Zl‘lwlz.

The combination weights are learned by an MLP with Softmax:
[, @1, 5] = Softmax(Sigmoid ([Zo||Z4 || Z5[|dT W1 ) Was,.), (49)

24



Under review as a conference paper at ICLR 2025

Algorithm 1 Algorithm of CMGNN
Require: Graph G = (V,£,X, A,Y), loss weight A, epoch E
Ensure: Predicted labels Y ~
1: Initialize the soft predicted labels C' with other elements %
2: Construct class prototypes as additional virtual neighbors for all nodes via Eq[4]
3: for iteration 1, 2, ..., E/ do
4:  Obtain the input representations for the first layer via Eq[I3]
5:  Estimate the compatibility matrix via Eq[5} Eql6] Eq[7] and Eq[§]
6:  Obtain the output representations through the CM-aware message-passing mechanism via
Eq[I2} or the detailed version Eq47} Eq/48} Eq{49] and Eq[50}
7:  Obtain the predicted logits (soft label) C via Eq
8:  Calculate loss £ via Eq[T3]
9:  Back-propagation £ to optimize the weights of networks.
10:  if the performance in the validation set improved then

11: update the compatibility matrix with current soft predicted label C.
12:  endif

13: end for N . .

14: Obtain the predicted labels Y via Y = Softmax(C).

15: return Y

where W', € RB&+Ux3 and W! . € R3*3 are two learnable weight matrixes, d is the node
degrees which may be helpful to weights learning.

The Message Passing of Supplementary Prototypes. Specifically, the virtual prototype nodes are
viewed as additional nodes, which have the same message-passing mechanism as real nodes:

ZPil — diag(agtt’l)zp“’l*lWé + diag(ofl’”’l)AI’“Zp”’l*lWl1

+ diag(agtt,l)(Aptt,sup ® Bptt,sup)zptt,l—lwl%
L
I

(50)

ptt __ ptt,l
Zrtt — || zpttl

=0

where AsuPPtt — 1 ¢ REXK and Bswp-ptt — CPUM are similar with those of real nodes.

G MORE DETAIL ABOUT THE BENCHMARK

In this section, we describe the details of the new benchmarks, including (i) the reason why we need a
new benchmark: drawbacks of existing datasets; (ii) detailed descriptions of newly organized datasets;
(iii) baseline methods and the codebase; and (iv) details of obtaining benchmark performance.

G.1 DRAWBACKS IN EXISTING DATASETS

As mentioned in Platonov et al.| (2023)), the widely used datasets Cornell, Texas, and Wisconsilﬂ have
a too small scale for evaluation. Further, the original datasets Chameleon and Squirrel have an issue
of data leakage, where some nodes may occur simultaneously in both training and testing sets. Then,
the splitting ratio of training, validation, and testing sets are different across various datasets, which
is ignored in previous works.

Therefore, to build a comprehensive and fair benchmark for model effectiveness evaluation, we
will newly organize 10 datasets with unified splitting across various homophily values in the next
Subsection

G.2 NEWLY ORGANIZED DATASETS

In our benchmark, we adopt ten different types of publicly available datasets with a unified splitting
setting (48%/32%/20% for training/validation/testing) for fair model comparison, including Roman-

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Empire (Platonov et al.} 2023), Amazon-Ratings (Platonov et al., 2023), Chameleon-F (Platonov.
et al., 2023)), Squirrel-F (Platonov et al.,[2023)), Actor (Pei et al.,|2020), Flickr (Liu et al.,[2021)),
BlogCatalog (Liu et al.,|2021), Wikics (Mernyei & Cangeal, 2020), Pubmed (Sen et al., 2008), and
Photo (Shchur et al.,|2018). The datasets have a variety of homophily values from low to high. The
statistics and splitting of these datasets are shown in Table[6] The detailed description of the datasets
is as follows:

Table 6: Statistics and splitting of the experimental benchmark datasets.

Dataset | Nodes | Edges | Attributes | Classes | Avg. Degree | Undirected | Homophily | Train/ Valid / Test
Roman-Empire | 22,662 | 65,854 300 18 2.9 v 0.05 10,877/17,251 /4,534
Amazon-Ratings | 24,492 | 186,100 300 5 7.6 v 0.38 11,756 /7,837 / 4,899
Chameleon-F 890 13,584 2,325 5 15.3 X 0.25 4271728417179
Squirrel-F 2,223 65,718 2,089 5 29.6 X 0.22 1,067 /7117445
Actor 7,600 30,019 932 5 39 X 0.22 3,648 /2,432/1,520
Flickr 7,575 | 479,476 12,047 9 63.3 v 0.24 3,636/2,424 /1,515
BlogCatalog 5,196 | 343,486 8,189 6 66.1 v 0.40 2,494 /1,662 /1,040
Wikics 11,701 | 431,206 300 10 36.9 v 0.65 5,616/3,744 12,341
Pubmed 19,717 | 88,651 500 3 4.5 v 0.80 9,463 /6,310/3,944
Photo 7,650 | 238,162 745 8 31.1 v 0.83 3,672 /2,448 /1,530

. Roman-EmpireE] (Platonov et al.,|2023)) is derived from the extensive article on the Roman Empire
found on the English Wikipedia, chosen for its status as one of the most comprehensive entries on
the platform. It contains 22,662 nodes and 65,854 edges between nodes. Each node represents an
individual word from the text, with the total number of nodes mirroring the length of the article.
An edge between two nodes is established under one of two conditions: the words are sequential in
the text or they are linked in the sentence’s dependency tree, indicating a grammatical relationship
where one word is syntactically dependent on the other. Consequently, the graph is structured
as a chain graph, enriched with additional edges that represent these syntactic dependencies.
The graph encompasses a total of 18 distinct node classes, with each node being equipped with
300-dimensional attributes obtained by fastText word embeddings (Grave et al., [2018]).

. Amazon-Rating@ (Platonov et al.l [2023)) is sourced from the Amazon product co-purchasing
network metadata dataset (Jurel 2014). It contains 24,492 nodes and 186,100 edges between nodes.
The nodes within this graph represent products, encompassing a variety of categories such as books,
music CDs, DVDs, and VHS video tapes. An edge between nodes signifies that the respective
products are often purchased together. The objection is to forecast the average rating assigned
to a product by reviewers, with the ratings being categorized into five distinct classes. For the
purpose of node feature representation, we have utilized the 300-dimensional mean values derived
from fastText word embeddings (Grave et al., 2018), extracted from the textual descriptions of the
products.

e Chameleon-F and Squirrel-FB] (Platonov et al., 2023)) are specialized collections of Wikipedia
page-to-page networks (Rozemberczki et al 2021)), of which the data leakage nodes are filtered
out by [Platonov et al.[(2023)). Within these datasets, each node symbolizes a web page, and edges
denote the mutual hyperlinks that connect them. The node features are derived from a selection
of informative nouns extracted directly from Wikipedia articles. For the purpose of classification,
nodes are categorized into five distinct groups based on the average monthly web traffic they receive.
Specifically, Chameleon-F contains 890 nodes and 13,584 edges between nodes, with each node
being equipped with 2,325-dimensional features. Squirrel-F contains 2,223 nodes and 65,718 edges
between nodes, with each node being equipped with a 2,089-dimensional feature vector.

. Actmﬂ (Pei et al.,[2020) is an actor-centric induced subgraph derived from the broader film-director-
actor-writer network, as originally presented by [Tang et al.|(2009). In this refined network, each
node corresponds to an individual actor, and the edges signify the co-occurrence of these actors
on the same Wikipedia page. The node features are identified through the presence of certain
keywords found within the actors’ Wikipedia entries. For the purpose of classification, the actors
are organized into five distinct categories based on the words of the actor’s Wikipedia. Statistically,

*https://github.com/yandex-research/heterophilous—graphs/tree/main/data
*nttps://github.com/bingzhewei/geom-gcn/tree/master/new_data/film
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it contains 7,600 nodes and 30,019 edges between nodes, with each node being equipped with a
932-dimensional feature vector.

¢ Flickr and Blogcatalodﬂ (Liu et al.,|2021) are two datasets of social networks, originating from
the blog-sharing platform BlogCatalog and the photo-sharing platform Flickr, respectively. Within
these datasets, nodes symbolize the individual users of the platforms, while links signify the
followship relations that exist between them. In the context of social networks, users frequently
create personalized content, such as publishing blog posts or uploading and sharing photos with
accompanying tag descriptions. These textual contents are consequently treated as attributes
associated with each node. The classification objection is to predict the interest group of each
user. Specifically, Flickr contains 7,575 nodes and 479,476 edges between nodes. The graph
encompasses a total of 9 distinct node classes, with each node being equipped with a 12047-
dimensional attribute vector. BlogCatalog contains 5,196 nodes and 343,486 edges between nodes.
The graph encompasses a total of 6 distinct node classes, with each node being equipped with
8189-dimensional attributes.

. Wikicsﬂ (Mernyei & Cangea, [2020) is a dataset curated from Wikipedia, specifically designed
for benchmarking the performance of GNNs. It is meticulously constructed around 10 distinct
categories that represent various branches of computer science, showcasing a high degree of
connectivity. The node features are extracted from the text of the associated Wikipedia articles,
leveraging the power of pretrained GloVe word embeddings (Pennington et al.l 2014). These
features are computed as the average of the word embeddings, yielding a comprehensive 300-
dimensional representation for each node. The dataset encompasses a substantial network of 11,701
nodes interconnected by 431,206 edges.

. Pubme (Sen et al., |2008)) is a classical citation network consisting of 19,717 scientific publica-
tions with 44,338 links between them. The text contents of each publication are treated as their
node attributes, and thus each node is assigned a 500-dimensional attribute vector. The target is to
predict which of the paper categories each node belongs to, with a total of 3 candidate classes.

. Photﬂ (Shchur et al., [2018) is one of the Amazon subset network from |Shchur et al.|(2018)). Nodes
in the graph represent goods and edges represent that two goods are frequently bought together.
Given product reviews as bag-of-words node features, each node is assigned a 745-dimensional
feature vector. The task is to map goods to their respective product category. It contains 7,650
nodes and 238,162 edges between nodes. The graph encompasses a total of 8 distinct product
categories.

G.3 BASELINE METHODS AND THE CODEBASE

For comprehensive comparisons, we choose 17 representative baseline methods as in the benchmark,
which can be categorized into four main groups of works as follows:

(i) Shallow Model: MLP;

(ii) Homopihlous Graph Neural Networks: GCN (Kipf & Welling, [2017), GAT (Velickovic et al.,
2018), APPNP (Gasteiger et al.,|2019), and GCNII (Chen et al., [2020);

(iii) Heterophilous Graph Neural Networks: H2GCN (Zhu et al .| [2020), MixHop (Abu-El-Haija
et al., [2019), GBK-GNN (Du et al.l 2022), GGCN (Yan et al., [2022), GIoGNN (Li et al.| [2022)),
HOGGCN (Wang et al.,[2022), GPR-GNN (Chien et al.,2021), ACM-GCN (Luan et al.| 2022), and
OrderedGNN (Song et al., [2023));

(iv) Compatibility Matrix-based Models: CLP (Zhong et al., 2022)), EPFGNN (Wang et al., 2021,
and CPGNN (Zhu et al., [2021a).

Detailed descriptions of some of these methods can be found in Appendix To explore the
performance of baseline methods on newly organized datasets and facilitate future expansions,
we collect the official/reproduced codes from GitHub and integrate them into a unified codebase.
Specifically, all methods share the same data loaders and evaluation metrics. One can easily run

Shttps://github.com/TrustAGI-Lab/CoLA/tree/main/raw_dataset
®https://github.com/pmernyei/wiki-cs—-dataset
"https://lings.soe.ucsc.edu/datac
$https://github.com/shchur/gnn-benchmark
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different methods with only parameters changing within the codebase. The codebase is based on
the widely used PyTorclﬂ framework, supporting both DGLEG] and quﬂ Detailed usages of the
codebase are available in the Readme file of the codebase.

G.4 DETAILS OF OBTAINING BENCHMARK PERFORMANCE

Following the settings in existing methods, we construct 10 random splits (48%/32%/20% for
train/valid/test) for each dataset and report the average performance among 10 runs on them along
with the standard deviation.

For all baseline methods except MLP, GCN, and GAT, we conduct parameter searches within the
search space recommended by the original papers. The searches are based on the NNI framework
with an anneal strategy. We use Adam as the optimizer for all methods. Each method has dozens
of search trails according to their time costs and the best performances are reported. The currently
known optimal parameters of each method are listed in the codebase. We run these experiments
on NVIDIA GeForce RTX 3090 GPU with 24G memory. The out-of-memory error during model
training is reported as OOM in Table

H MORE DETAILS ABOUT EXPERIMENTS

In this section, we describe the additional details of the experiments, including experimental settings
and results.

H.1 ADDITIONAL EXPERIMENTAL SETTINGS

Our method has the same experimental settings within the benchmark, including datasets, splits,
evaluations, hardware, optimizer, and so on as in Appendix[G.4]

Parameters Search Space. We list the search space of parameters in Table[/| where patience is for
the maximum epoch early stopping, n_hidden is the embedding dimension of hidden layers as well as
the representation dimension d,., relu_varient decides ReLLU applying before message aggregation
or not as in [Luan et al.| (2022), structure_info determines whether to use structure information as
supplement node features or not.

Table 7: Parameter search space of our method.

Parameters | Range
learning rate {0.001, 0.005, 0.01, 0.05}
weight_decay | {0, le-7, Se-7, le-6, 5e-6, Se-5, 5e-4}
patience {200, 400}
dropout [0, 0.9]
A {0,0.01, 0.1, 1, 10}
layers {1,2,4, 8}
n_hidden (32, 64, 128, 256}
relu_variant {True, False}
structure_info {True, False}

Ablation Study. In the ablation study, there are three variants of our methods: without SM, without
DL, without SM, and DL. For “without SM”, we delete the supplementary messages during message
passing, using only messages from node ego and raw neighborhood for combination. For ”without
DL”, we simply set A = 0 to delete the discrimination loss. For "without SM and DL”, we just
combine the above two settings.

‘https://pytorch.org
Uhttps://www.dgl.ai
"https://www.pyg.org
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Table 8: Node classification accuracy (%) and computational cost (min) comparison on large-scale
graphs. The error bar (£) denotes the standard deviation of results over 10 trial runs. The best and
second-best results in each dataset are highlighted in bold font and underlined.

Dataset | snap-patents | pokec | genius |
Homo. 0.073 0.445 0.618
Nodes 2,923,922 1,632,803 421,961
Edges 13,975,788 30,622,564 984,979
Classes 5 2 2
Method | acc(%) | cost(min) | acc(%) | cost(min) | acc(%) | cost(min)
MLP 31.30 £ 0.07 37 62.29 +£0.09 75 82.54+0.14 2
GCN 37.97 £0.04 87 70.12 £0.13 96 84.25+0.13 12
GAT 38.42+0.24 80 73.76 £ 0.38 287 81.89 +0.39 16
OrderedGNN | 38.43 +0.22 305 75.17 £0.18 273 85.15 £ 0.65 63
GCNII 40.90 £ 0.18 562 78.18 +0.49 522 84.99 + 0.48 188
CMGNN 62.86 = 0.38 148 81.74 = 0.50 393 85.44 +0.20 27

H.2 ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES

In this subsection, we show some additional experimental results and analyses.

H.2.1 DETAILED ANALYSIS ABOUT THE COMPARISON BETWEEN CMGNN AND EXISTING
CM-BASED METHODS

Specifically, CMGNN achieves better performances and benefits from the approach of utilizing CM in
the following aspects: (i) Better robustness for low-quality pseudo labels: Existing CM-based methods
utilize CM to guide the weights of propagation, which can lead to error accumulation with inaccurate
pseudo labels. This is a common limitation of CM-based methods. In CMGNN, the CM is used to
construct supplementary messages while original neighborhoods are preserved, mitigating the impact
of inaccurate pseudo labels. (ii) Unlock the effectiveness of CM for low-degree nodes: Existing
CM-based methods redefine pair-wise relations only for existing edges, limiting the effectiveness
of CMs for low-degree nodes. In CMGNN, virtual neighbors can provide prototype messages from
every class, enhancing neighborhood messages for low-degree or even isolated nodes. (iii) More
accurate estimation of CM: While existing CM-based methods take naive approaches to estimate
or initialize CM, CMGNN considers the effects of node degrees and model prediction confidence,
resulting in more accurate CM estimation, especially in real-world situations. Additionally, CM in
CMGNN is continuously updated with more accurate pseudo labels, creating a positive cycle.

H.2.2 EXPERIMENTS ON LARGE-SCALE GRAPHS

To further evaluate the scalability of CMGNN, we conduct additional experiments on 3 large-scale
datasets including snap-patents, pokec and genius (Lim et al.} 2021)), comparing with representative
baselines. The details of the datasets and results are listed in Table[[.2-1] As a result, CMGNN can
also achieve superior performance while maintaining good efficiency, especially on snap-patents with
22% improvements, which demonstrates great scalability.

H.2.3 ABLATION STUDY ON ADDITIONAL STRUCTURAL FEATURES

Utilizing additional structural features is a common approach in heterophilous GNNs that offers
another way to use connection relationships, introducing both discriminant and redundant information.
Thus it presents a trade-off between the advantages and disadvantages. We conducted an ablation
study to examine its effects and report the results in Table[0] The additional structure features have
positive effects on five datasets while others are negative. It doesn’t significantly impact performance
except for Roman-Empire. Moreover, CMGNN can still achieve competitive results without using
additional structural features.
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Table 9: Ablation study results (%) on the effects of additional structural features, where True denotes
CMGNN with additional structural features and False denotes CMGNN with only node features.

Structural Features ‘ Roman-Empire ‘ Amazon-Ratings ‘ Chameleon-F ‘ Squirrel-F ‘ Actor ‘ Flickr ‘ BlogCatalog ‘ Wikics ‘ Pubmed ‘ Photo
True 68.43 £2.23 52.13+0.55 4570 £4.92 | 41.89£2.34 | 3572075 | 92.66 £0.46 | 96.47 £0.58 | 84.50 +0.73 | 88.90 +0.45 | 95.08 £0.43
False 84.35+1.27 51.41+0.57 44.85+5.64 | 4049+ 1.55 | 36.82+0.78 | 92.05+0.75 | 97.00 £0.52 | 83.88+0.75 | 89.99 +0.32 | 9548 £ 0.29

H.2.4 VISUALIZATION OF COMPATIBILITY MATRIX ESTIMATION

We visualize the observed and estimated CMs by CMGNN in Figure [ with heat maps. Obviously,
CMGNN estimates CMs that are very close to those existing in graphs. This shows that even
with incomplete node labels, CMGNN can estimate high-quality CMs which provides valuable
neighborhood information to nodes. Meanwhile, it can adapt to graphs with various levels of
heterophily.
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Figure 6: The visualization of real and estimated CMs on other datasets.
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H.2.5 ADDITIONAL PERFORMANCE ON NODES WITH VARIOUS LEVELS OF DEGREES.

We show the additional performance on nodes with various degrees in Table[T0] The results show that
CMGNN can achieve relatively good performance on low-degree nodes, especially on heterophilous
graphs. For the opposite results on homophilous graphs, we guess it may be due to the low-degree
nodes in homophilous graphs having a more discriminative semantic neighborhood, such as a one-hot
form. On the contrary, there are relatively more high-degree nodes with confused neighborhoods due
to the randomness, which leads to the shown results on homophilous graphs.

Table 10: Node classification accuracy comparison (%) among nodes with different degrees.

Dataset Roman-Empire Chameleon-F Actor
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN 88.60 87.00 85.59  86.25 7433 | 40.73 4528  56.02  46.64 39.93 | 3556 37.14 3840  36.03 36.84
ACM-GCN | 79.00 77.87 7352  72.09 53.77 | 39.51  41.21 5225  45.80 47.09 | 3448 36.58  36.27  34.63 37.46
OrderedGNN | 88.60 87.00 85.56  84.68 69.69 | 4321 4451  49.16 3827 3223 | 3594 38.06 37.87 3577 3715
GCNII 86.79 85.14 8520  84.75 71.09 | 3484 4256 4750 4045 41.84 | 36.89 3720 3853  38.02 36.99

Dataset Squirrel Pubmed Photo
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN 4537 4710 4525 3486 37.10 | 89.32 89.33  89.31 92.62 89.39 | 88.88 9576 96.96  98.27 97.55
ACM-GCN | 41.12 4430 4422 3297 42.10 | 89.60 89.54 89.58  92.02 89.23 | 89.88 9520 9695  98.00 97.56
OrderedGNN | 43.78 4553  43.09 27.90 2848 | 89.67 8937 8945 92.54 89.02 | 90.13 95.77 97.14 98.24 97.58
GCNII 43.08 4555 43.65 33.07 38.05 | 89.77 8950 89.24 9245 88.86 | 8889 9536 97.12 97.83 96.64

H.3 EFFICIENCY STUDY

Complexity Analysis. The number of learnable parameters in layer [ of CMGNN is 3d,.(d,- + 1) + 9,
compared to d,.d, in GCN and 3d,.(d, + 1) + 9 in ACM-GCN, where d, is the dimension of
representations. The time complexity of layer [ is composed of three parts:

(i) AGGREGATE function: O(Nd,?), O(Nd,* + Md,) and O(Nd,* + NKd,) for identity neigh-
borhood, raw neighborhood and the supplementary neighborhood respectively, where N and M = |£]
denotes the number of nodes and edges;

(i) COMBINE function: O(3N (3d, + 1) + 12N) for calculating adaptive weights and O(3N) for
combination,;

(iit) FUSE function: O(1) for concatenations.

Thus, the overall time complexity of L-layer CMGNN is O(L(Nd,.(3d, + K +9)+Md,+18N)+1),
or O(LNd,* + LMd,) for brevity.

Experimental Running Time. we report the actual average running time (ms per epoch) of baseline
methods and CMGNN in Table[TT]for comparison. The results demonstrate that CMGNN can balance
both performance effectiveness and running efficiency.

Table 11: Effiency study results of average model running time (ms/epoch). OOM denotes out-of-
memory error during the model training.

Method | Roman-Empire A Ratings Ck 1 F Squirrel-F  Actor Flickr BlogCatalog Wikics Pubmed Photo
MLP 7.8 7.0 6.1 6.5 6.3 9.1 6.7 6.4 6.1 5.8
GCN 33.8 334 7.9 20.6 344 37.2 30.4 25.5 35.6 28.1
GAT 15.9 67.3 10.3 14.0 30.8 66.2 17.6 26.8 334 36.0

APPNP 14.6 15.9 13.9 21.3 14.6 20.2 232 16.2 21.2 15.5
GCNII 294 28.4 37.3 19.6 37.7 84.2 97.6 20.7 258.0 46.9

CPGNN 12.7 20.3 12.2 13.4 13.6 18.9 16.7 15.5 14.0 11.7

H2GCN 20.0 31.2 17.2 324 55.6 4157 165.5 332.8 39.0 87.6

MixHop 434.6 486.3 219 31.0 30.6 90.4 81.6 2774 89.5 172.2

GBK-GNN 119.8 191.8 31.0 238.1 157.9 OOM OOM 198.6 137.0 193.3
GGCN OOM OOM 55.7 42.1 199.8 1112 108.7 226.6 2290.8 1052
GloGNN 254 19.3 121.8 233 1292 562.9 30.9 1658.1 432 677.4
HOGGCN OOM OOM 252 54.3 10029  707.3 367.4 1406 OOM 655.3
GPR-GNN 15.9 12.5 223 232 16.7 159 14.7 49.8 13.2 13.1
ACM-GCN 56.7 56.7 26.1 29.7 225 60.7 31.7 424 37.1 40.1
OrderedGNN 86.0 110.8 49.5 60.1 67.8 107.0 88.3 116.9 88.1 78.2
CMGNN 51.5 935 62.5 64.7 19.0 525 69.8 44.0 102.9 20.4
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Trade-off Analysis between Effectiveness and Efficiency. We have also visualized the trade-off
between performance accuracy and empirical runtime compared to baseline methods in Figure
From the results, we can see that CMGNN achieves the best performance with relatively low time
consumption. Compared with OrderedGNN and GCNII, which have the second- and third-best
average ranks, CMGNN offers both better accuracy and lower time consumption.
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Figure 7: Visualizations of the trade-off between performance accuracy and training time compared
with baseline methods on three representative datasets.
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